A Penalized Linear and Nonlinear Combined Conjugate Gradient Method for the Reconstruction of Fluorescence Molecular Tomography

نویسندگان

  • Shang Shang
  • Jing Bai
  • Xiaolei Song
  • Hongkai Wang
  • Jaclyn Lau
چکیده

Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

A conjugate gradient based method for Decision Neural Network training

Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...

متن کامل

Mri Image Reconstruction: Using Non Linear Conjugate Gradient Solution

The images extracted from Tomography are complex. Tomography images like Magnetic Resonance Images (MRI), angiograms, X-rays or CT scanned images extracted from scanner are further reconstructed to analyze smallest piece or portion of the images for investigation of diseases. The MR images when they extracted from scanner are under-sampled, added with artifacts called interference. L1-norm tech...

متن کامل

Non-linear compressed sensing and its application to beam hardening correction in x-ray tomography

Traditionally, compressed sensing assumes a linear, ill-posed or non-invertible forward model, which is inverted with the help of non-convex constraints. Recently these ideas have been extended to non-linear forward models. It could be shown that, under certain conditions, strong performance guarantees available for traditional compressed sensing also hold in the non-linear case. In this paper ...

متن کامل

Global conjugate gradient method for solving large general Sylvester matrix equation

In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and  $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$  is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Biomedical Imaging

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007